Metabolic syndrome is associated with cardiovascular diseases and is characterized by insulin resistance. Recent studies suggest that the triglyceride/high-density lipoprotein cholesterol (TG/HDLC) ratio predicts insulin resistance better than individual lipid levels, including TG, total cholesterol, low-density lipoprotein cholesterol (LDLC), or HDLC. We aimed to elucidate the relationship between the TG/HDLC ratio and metabolic syndrome in the general Korean population.
We evaluated the data of adults ≥20 years old who were enrolled in the Korean National Health and Nutrition Examination Survey in 2013 and 2014. Subjects with angina pectoris, myocardial infarction, stroke, or cancer were excluded. Metabolic syndrome was defined by the harmonized definition. We examined the odds ratios (ORs) of metabolic syndrome according to TG/HDLC ratio quartiles using logistic regression analysis (SAS ver. 9.4; SAS Institute Inc., Cary, NC, USA). Weighted complex sample analysis was also conducted.
We found a significant association between the TG/HDLC ratio and metabolic syndrome. The cutoff value of the TG/HDLC ratio for the fourth quartile was ≥3.52. After adjustment, the OR for metabolic syndrome in the fourth quartile compared with that of the first quartile was 29.65 in men and 20.60 in women (P<0.001).
The TG/HDLC ratio is significantly associated with metabolic syndrome.
Citations
Friedewald equation is the most widely used method for estimating low-density lipoprotein cholesterol (LDL-C) level. However, due to potential over- or underestimation, many studies have used a modified equation. This study aimed to compare estimates by 4 different equations to directly measured LDL-C concentrations in order to propose the most appropriate method for LDL-C estimation in the Korean population.
We studied data of 4,350 subjects that included total cholesterol, high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), and LDL-C concentrations that had been measured at one university hospital in Seoul. We investigated 4 equations: LDL-C by Friedewald's original equation (LDL-CF) and its 3 modifications. Pearson correlation analysis was performed to compare these estimates to the direct measurement.
Pearson correlation analysis revealed a good correlation among all 4 estimated LDL-C values and the directly measured LDL-C value. The Pearson coefficients were 0.951 for LDL-CF, 0.917 for LDL-C by Hatta equation (LDL-CH), 0.968 for LDL-C by Puavilai equation (LDL-CP), and 0.983 for LDL-C by Martin equation (LDL-CM). Martin equation (LDL-CM) resulted in the best approximation (mean difference from the direct measurement, 5.5 mg/dL; mean percentage difference from the direct measurement, 5.1%) and the best agreement with the direct measurement (86.1%). LDL-CP resulted in the second-best approximation (mean difference, 7.0 mg/dL; mean percentage difference, 6.2%; concordance, 82.5%). LDL-CM was found to be less influenced by TG and HDL-C levels than by LDL-CF.
Estimates by Martin equation had the best agreement with direct LDL-C concentrations and both Martin and Puavilai equations were superior to Friedewald equation for estimating LDL-C concentrations in Korean adults.
Citations